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Abstract

A rigorous and unified treatment of the theory of non-isothermal flow and deformation in unsaturated porous media
is presented. The governing equations based on the equations of equilibrium, the effective stress concept, Darcy’s law,
Fourier’s law and the conservation equations of mass and energy are derived using a systematic macroscopic approach.
The thermo-hydro-mechanical coupling processes taken into account include: thermal expansion, thermal convection by
moving fluid, fluid flux due to temperature gradient (Soret effect), phase exchange (vaporisation, condensation), heat
exchange between the phases, heat of wetting, and heat due to phase compression. Both elastic and elasto-plastic consti-
tutive equations are developed. All model coefficients are identified in terms of measurable parameters. The governing
equations derived are general in nature, embodying all previously presented formulations in the field. For example, when
the heat of wetting, and that heat due to phase compression are neglected, and it is assumed that the vapour is at
the saturated liquid pressure, with all phases in thermal equilibrium, and that the forced convection is negligible, the
theory of heat and mass transfer presented by Thomas and his coworkers is obtained. Also when the pore air volume
reduces to zero and the thermal equilibrium is assumed, the thermo-elastic model for fluid saturated media presented
by McTigue [J. Geophys. Res. 91 (B9) (1986) 9533] is recovered. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of heat and mass transport in porous media is a subject of great interest in many engi-
neering disciplines. Typical examples include: utilisation of geothermal energy (Jessop, 1998; Kolditz and
Clauser, 1998), tertiary enhancement of oil production, remediation of contaminated sites using air spar-
ging (Domenico and Schwartz, 1990; Flynn et al., 1994; Nyer et al., 1996), steam drive/steam flooding
(Burger, 1978; Duerksen et al., 1984; Meyer, 1991), in situ combustion (Murdock et al., 1990; Greaves and
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Ibrahim, 1991), and the isolation of hazardous wastes (Chapman and McKinley, 1987). The phenomenon
has also bearing on process, mechanical, water resources and agricultural engineering. Over the past two
decades, the study of non-isothermal mass flow in porous media and development of strategies for its
management and/or containment in natural formations and engineered materials has been a key area of
research in modern environmental geomechanics. Many attempts have been made to develop predictive
capabilities associated with topics such as the storage of nuclear wastes, remediation of contaminated sites,
movement of pollutant plumes, etc.

Several constitutive models have been proposed. Philip and de Vries (1957) presented a model for
coupled heat and moisture transfer in rigid porous media under the combined gradients of temperature and
moisture. de Vries (1958) extended this theory to include moisture and latent heat storage in the vapour
phase, and the advection of sensible heat by water. Modified versions of Philip-de Vries model were also
proposed by Sophocleous (1978), Milly (1982), Bear et al. (1991), Thomas and King (1991) and Thomas
and Sansom (19995), using matric suction rather than volumetric moisture content as the primary variable.
The laboratory and field validation of Philip and de Vries theory has been reported by Rose (1968), Ewen
and Thomas (1989) and Thomas and Li (1997), among others. Reasonable agreement has been found
between the theoretical analyses and the laboratory/field results. Geraminegad and Saxena (1986) presented
a de-coupled flow—deformation model, including the effect of matrix deformation on moisture, heat and gas
flow through the porous media. They defined the mechanical behaviour of the soil in terms of the “stress
state surface” and the “independent stress state variables’, in which the total stress tensor in excess of air
pressure (net stress) and suction are considered independent (Matyas and Radhakrishna, 1968; Fredlund
and Morgenstern, 1977). A coupled version of this formulation was later presented by Thomas and He
(1995, 1997). They introduced matrix displacement vector as a primary variable, and improved the coupling
effects between the temperature and deformation. They also improved the energy balance equation by
including moisture and latent heat storage in the vapour phase, in addition to the advection of heat by
water previously accounted for by de Vries (1958). Similar formulations have also been given by Gawin
et al. (1995), Gawin and Schrefler (1995), Gens et al. (1998) and Zhou et al. (1998, 1999). However, in
Gawin et al. (1995) and Gawin and Schrefler (1995) the constitutive laws of the solid phase were introduced
through the concept of effective stress. Nevertheless, they used the degree of saturation, as the effective
stress parameter, which is not fully supported by the experimental evidence. They also retained the degree
of saturation as the main coupling element between the air and water flow fields, rendering the governing
differential equations strongly non-linear.

In general, a major difficulty in the formulations discussed above is that they either completely ignore the
matrix deformation (e.g. Philip and de Vries, 1957; de Vries, 1958; Milly, 1982; Bear et al., 1991; Thomas
and King, 1991; Thomas and Sansom, 1995; Nassar and Horton, 1997) or use the theory of elasticity
(Gawin et al., 1995; Gawin and Schrefler, 1995) in conjunction with the “state surfaces” approach (Thomas
and He, 1995; Gens et al., 1998; Zhou et al., 1998) to account for the strongly non-linear deformation
behaviour of the soil matrix. It is well established that vastly different volumetric responses can be obtained
in an unsaturated soil, subject to identical increases in matric suction and net stress, but applied at different
sequences. Such stress path dependency cannot be modelled using the theory of elasticity and/or the state
surfaces approach. An appropriate plasticity model must be invoked, in order to take into account the
variation of the yield surface with temperature and suction. Furthermore, in these formulations, the effect
of temperature on the state surfaces is not well defined, despite its importance in the deformation response
of the soil (e.g. see Hueckel and Baldi, 1990; Sultan, 1997).

Another difficulty in the formulations above is that they often neglect the advective flow of vapour and
do not consider the transfer of heat between the phases, which can be significant particularly in applications
involving fractured rock formations or processes which require injection or extraction of steam/heated air
into or out of natural formations. A detailed account of the constraints associated with the local thermal
equilibrium assumption may be found in Quintard and Whitaker (1995). Also assumed in these formula-
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tions is the spontaneous thermo-dynamic equilibrium between the soil liquid and the water vapour, ren-
dering the vapour pressure a dependent variable of suction and temperature, thus allowing the flux of
vapour and liquid water to be presented using a single equation (Thomas and He, 1995; Gens et al., 1998).
Although convenient from a modelling point of view, this assumption is restrictive and may only be ap-
plicable to processes which are thermally induced and diffusion dominated. In fact, most of the models
presented in the literature appear to have been developed for a specific application, namely a heat genera-
ting canister located in a low permeability formation.

The major objective of this paper is to present a more complete treatment of the theory of heat and mass
transport through deformable unsaturated porous media. The work is an extension of the theoretical de-
velopments of Loret and Khalili (2000a) for fully coupled isothermal flow through variably saturated
deformable porous media to include thermal coupling effects. The governing equations are developed using
a systematic macroscopic approach, satisfying the equations of balance of mass, momentum and energy.
Three phases (solid, s, liquid, 1, and gas, g) and four constituents (solid, s, water, w, vapour, v, and dry air,
da) are identified. Each phase is viewed as an independent continuum, endowed with its own kinematics,
mass, momentum, temperature and energy. Thermal non-equilibrium between the phases is assumed
throughout. The solid constituent and the fluid are a priori compressible, but either one can be made in-
compressible, if necessary. Matrix displacement vector, pore gas pressure, pore water pressure, pore vapour
pressure, solid temperature, liquid temperature and gas temperature are introduced as the nine primary
variables in a three-dimensional boundary value problem. The system is closed using the static equilibrium
or balance of momentum of the entire mixture (three equations), the balance of momentum of the fluid
phase or Darcy’s law (two equations), the balance of energy of each of the three phases (three equations)
and the balance of mass of vapour (one equation). The physical processes taken into account for the
purposes of constitutive modelling include: mechanical deformation, thermal expansion, advection, diffu-
sion (Fick’s law), heat conduction (Fourier’s law), liquid flux due to temperature gradient (Soret effect),
phase exchange (vapourisation, condensation), heat convection (by moving liquid and moving gas), heat
exchange between the phases, heat of wetting, heat due to phase compression and heat transfer due to phase
exchange (latent heat). The potential effect of damage due to suction and desiccation induced cracking is
ignored. Both elastic and elasto-plastic constitutive equations are discussed. Special attention is placed on
identifying model parameters in terms of measurable coefficients. Emphasis is also placed on the interaction
between the phases both in the elastic and plastic regimes.

2. Conceptual model

Conceptually, the formulation presented consists of four separate, yet overlapping models. These in-
clude: (1) deformation model, (2) flow model, (3) vapour transport model, and (4) heat transfer model.

The deformation model is based on a thermo-elastic—plastic framework, satisfying the equations of
equilibrium. The yield surface is defined in the effective stress space but it is affected by the plastic volu-
metric strain, matric suction, and temperature. The constitutive equations in both elastic and plastic re-
gimes are written in terms of effective stress rather than the independent stress state variables as used in
previous models (Alonso et al., 1990). The advantage of using the effective stress is that the elastic de-
formation of the system can completely be expressed in terms of a single “effective” stress variable rather
than two or three independent stress variables. This significantly simplifies the deformation model, and
hence reduces the model parameters (Loret and Khalili, 2001). Furthermore, with an effective stress based
model, the transition from saturation to unsaturation or vice versa can be readily taken into account using
a single set of constitutive equations (Loret and Khalili, 2000a). For a discussion on the validity of the
effective stress principle in unsaturated soils the reader is referred to Khalili et al. (2001).
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The flow model is based on two interacting continua: one representing the liquid flow and the other the
gas flow. Thus, at every point in space, two pressures are introduced: one denoting the average liquid
pressure — at the neighbourhood of the given point — and the other the average gas pressure. The interaction
between the two flow fields is established through the phase exchange term, describing the transfer of water
from liquid phase to gas phase in a vapour form, and vice versa, and through the soil water characteristic
curve describing the dependency of the volume fraction occupied by each phase (or the degree of satura-
tion) on suction at a given temperature. The rate of phase transfer at any point is assumed to be a function
of the difference between the saturated vapour pressure and the partial vapour pressure within the gas
phase. The coupling between the flow and the deformation fields is established through the effective stress
parameters, oy and o,, which relate the change in liquid and gas pressures to the change in the matrix
deformation vector.

The vapour transport model is based on two processes: diffusion due to the vapour density gradient, and
advection due to the bulk flow of the gas. The vapour is treated as an ideal gas and as a constituent within
the gas phase. The link between the vapour transport model and the liquid flow model is established
through the mass exchange term and the psychrometric law. The coupling with the deformation model is
achieved through the gas phase and the effective stress parameter o,.

The heat transfer model is based on the assumption that energy is transferred through all three phases
and that the phases are not at thermal equilibrium. At any point, three temperatures are introduced; one for
each of the phases of solid, liquid and gas. Vapour and dry air are assumed to be at the same temperature.
The energy transfer processes considered include: conduction, advection or convection (i.e. by the moving
phases), heat transfer due to phase exchange, heat exchange between the phases, heat of wetting, and heat
generated due to phase compression. The thermal interaction between the phases is established through the
phase exchange terms. The coupling between the heat transfer model and the flow and deformation models
is established through the heat of wetting and the heat of compression. For the flow model, an additional
coupling is also established through the heat transfer due to phase exchange (latent heat).

3. Deformation model

To describe the solid phase deformation in an unsaturated thermo-elastic medium, consider a repre-
sentative elementary volume of the medium, subject to external (total) stresses, ¢;;. The linear momentum
balance equations for this elemental volume, neglecting the inertial effects, are written as,

a(r,-j

+E=0 i=1,...,N (1)

ij

where F; is ith component of the body force per unit volume in the orthogonal spatial coordinates, x;, with
i=1,...,N, and N is the space dimension. Extending Terzaghi’s effective stress to unsaturated soils, and
considering the effects of pore gas and pore liquid pressures separately, the total stress in an incremental
form may be expressed as,

do;; = dG;j — oqdpidy; — 0y dpg 0y ?

where agj is the effective stress, py is the pore liquid pressure, p, is the pore gas pressure (positive for
compressive pressure), o and o, are the incremental effective stress parameters, and ¢;; is the Kronecker’s
delta. Following and extending Nur and Byerlee (1971) analysis for isotropic saturated soils, the effec-
tive stress parameters o; and o, can be defined as, Khalili and Khabbaz (1995) and Loret and Khalili
(2000a),
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Cm G Cm
m=-— and o, =1 - (3)
where ¢, is the compressibility of solid grains, ¢ is the drained compressibility of the soil structure, and ¢,
represents the tangent compressibility of the soil structure with respect to a change in matric suction
s = pg — pi. For incompressible solid grains, Eq. (3) yields o; 4+ o, = 1. Notice that at full saturation, ¢, = c,
thus, oy = 1 and «, = 0, and Eq. (2) reduces to Terzaghi’s effective stress for saturated soils.
For a thermo-elastic medium the stress—temperature—strain relationship is written as,

doj; = Dy des — ydT90; “

where Dy, is the drained stiffness of the soil skeleton, with symmetries in the first two and the last two
indices, ¢; is the soil skeleton strain, 7 is the temperature of the solid constituent, and y =—1/3(9d/,,,/
aTS)\w, which is related to the volumetric thermal expansion of the medium, ct, through y = ¢1/c. Implicit
in Eq. (4) is the assertion that the thermal expansion of the solid skeleton is controlled by the temperature
of the solid constituent only. This is in contrast with the work of Pecker and Deresiewicz (1973), in which
the thermal expansion of the solid skeleton for saturated porous media is related to a combination of solid
and pore fluid temperatures. To explore this aspect further, consider an elemental volume of a porous
medium subject to constituent temperatures 7;, 7 and 7,, with 7; and 7, denoting the temperature of the
liquid and gas constituents occupying the pore space, respectively (Fig. 1). Let the solid constituent be
completely sealed from the thermal effects within the pore space. It is evident that in such a system the
“drained” thermal expansion/contraction of the solid skeleton will be independent of the temperature
changes within the pore space. Extending this model to real soils, it is concluded that the drained thermal
volumetric change in the solid skeleton is independent of the change in the pore gas and pore liquid
temperatures, until energy exchange occurs between the constituents, giving rise to a change in the tem-
perature of the solid. This latter effect, which is a matter of conservation energy, is included in the energy
balance equations of solid, liquid and gas.
Now, using the relationship between the strain and displacement,

o= — [ 2 5
9 2< Ox; T, > ®
where u; denotes the displacement components of the solid skeleton, Egs. (1)—(5) can be combined to yield,
0 o0du
o { ijkl?lk — (oudp + g dp, + ydT5)d;; | +dF; =0 (6)
J
Thermal
T9 / Seal

Fig. 1. Schematic representation of a three phase thermo-elastic porous element.



8310 N. Khalili, B. Loret | International Journal of Solids and Structures 38 (2001) 8305-8330

The set of differential equations (6), for i =1,...,N, governs the deformation phenomenon in an unsatu-
rated thermo-elastic medium.

4. Flow model
4.1. Liquid phase

The most common method of modelling liquid flow in unsaturated media is to combine the equation of
linear momentum balance for the liquid phase with the mass balance equation of the fluid. Neglecting the
inertial and viscous effects, the equation of linear momentum balance for the liquid phase can be written as,

k]," 6[7] aTi

=2 = N —kmii—, i=1,...,N 7

li m <axj + Pig; ITij ax; (7)
where ky; is the intrinsic permeability of the liquid phase and kir;; is the coefficient of thermal coupling for
liquid flux (thermo-osmosis), analogous to the Soret effect in molecular diffusion, in which mass flux is
caused due to both concentration gradient and temperature gradient. y; and p, are the dynamic viscosity
and the density of liquid respectively, and g; is the ith component of gravitational acceleration. vj; is the
relative velocity of liquid defined as,

v = m(vi — vy) (8)
where n; is the volumetric liquid content, v;; is the absolute liquid velocity and vy is the solid skeleton
velocity,

- auli
oot
where u;; and u; are the components of displacements of fluid and solid, respectively.

Satisfying the conservation of fluid mass yields,

) 0 )
T (pymuvy) = o (mpy) + pijig (10)

Ou;
d si — : 9
and v 3 9)

Ui

where ji, denotes the rate of moisture transfer between the liquid phase and the gas phase (negative for
condensation and positive for vapourisation), which can be described using Dalton’s equation as (e.g. see
Marshall and Holmes, 1988),

Jig = 0(psy = py) (11)

in which w > 0 is the liquid phase transfer coefficient, p, is the vapour pressure, and py, is the saturated
vapour pressure which can be obtained using the psychrometric law (Kelvin’s equation), e.g. Stallman
(1964),

—SM>
Dsv = Dsvo €XP 12
(PlRTg (12

where M, is the molecular mass of liquid (= 18 g/mol for water), R (= 8.134 J/mol/K) is the universal gas
constant, s is the suction, and py,, is the saturated vapour pressure in contact with the liquid over a planar
surface. py, 1s a function of temperature only. It can be obtained using the empirical vapour pressure data
published in the literature (e.g. Maidment, 1992), or calculated based on Clausius—Clapeyron equation, e.g.
Kestin (1966),
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—LM,
svo — G 13
poo =sex0 () (13)

in which L is the latent heat of vapourisation, and ¢ = p exp(LM,/RT*), with T* and pf,, being the
temperature and the saturated vapour pressure in contact with water over a planar surface, respectively, at
a reference configuration.
Now, substituting Eq. (8) into Eq. (10),
0 . 0 0 )

T ox (p1v) — o (pimvg) = o (pim) + pujig (14)
and introducing the Lagrangian total derivative with respect to moving solid, d(-)/d¢=0(-)/0r+
050(+)/0x;, and moving liquid, d,(-)/d¢ = 0(-)/0¢ + v,;0(+) /Ox;, Eq. (14) can be rearranged to,

dip, dym v

0
pla (Ulz) =nm— df + P dt a +p]]lg (15)
If the liquid is barotropic, p, = p,(p1, T), then,
dipy dipy di7i
A P ety (16)
in which
:lapl and ¢r = _ 1o
1 opu |y, p1 OTi |,

are the coefficients of compressibility and thermal expansion for liquid, respectively. Using the definition
of volumetric liquid content, n, = I{/V,

dsnl L /dn 4V

dr < dr W) (17)
Egs. (7), (15), (16) and (17) can be combined to yield,

0 [ky (Op oTy dp 1 dH dn .

o, [ / (axj + Plg/> + kirij =— o } meq; +— 7 dr nlclTW"_]lg (18)

In Eq. (18), d;¥{/V represents the change in the pore liquid space over the current volume of the porous
medium, which for isothermal conditions can be calculated from (Khalili and Khabbaz, 1995; Khalili and
Valliappan, 1996),

dsV 0 ’
Vl = (cm—cs)ds<?—|—pg) — ), ds(pe — ;1) — mesdspy (19)

where ¢, = —(d;}i/V)/ds|,, r, represents the change in the volumetric pore liquid content with suction,
which can be obtained using the slope of the soil water characteristic curve (Loret and Khalili, 2000a).
Extending Eq. (19) to include thermal effects, we have,

dsn
v

in which &, denotes the change in the pore liquid space due to a change in the curvature of the liquid—gas
interface, arising from the temperature dependency of the interfacial surface energy. 7 is the average
temperature acting on the liquid—gas interface, approximated as 7 = nTy + n,T, + m7j, in which ny is the
volumetric solid content, n, is the volumetric gas (dry air and vapour) content, and »; is the volumetric
liquid content subject to the constraint ns + n, +n = 1. T; is the temperature of the solid constituent, 7 is

= (em — Cs5) ds<% —|—pg) — ¢ ds(py — p) — mesdgpy + Egr ds T + mer dg T, (20a)
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the gas temperature, 7] is the liquid temperature. The last term on the right-hand side of Eq. (20a) rep-
resents the change in the volumetric pore liquid due to the overall change in the volume of the solid skeleton
with temperature.

From Egs. (2)-(4),

Oji 1 Cm
A (5 +pe) == (e — erdT) +adi(p, —p) + = dopy (20b)
Eq. (20a) can be rearranged to,
d A
Vl = adse; + (¢, —ole)dsp — (¢, — e — oycs + mics) dgpg — (4 — m)er do Ty + EgrdsT (20c)

Now, substituting Eq. (20b) into Eq. (18), noting (1/¥)dV /dt = Ov/0x;, and introducing the approxi-
mation vy;0(-)/0x; < 0(-)/0t or dy(+)/dr = 8(-)/0t, the differential equation governing non-isothermal liquid
flow through an unsaturated porous medium becomes,

0 [ky [ Op oT; , opy , op o%u;
a—xi |:71]<a—xj+p|gj +k1T,-ja—xj = (n1C1+Cm *OCIZC)E* (Cm *OCIZC*QICS*FIZ[CS)a—tg‘Fa] a[axi
0T 0T 0 oT. oT
— ’1101Ta—t1 — nervy 6_x,l + nlclvlia_i)i — (g — nl)CTa_tS + &gt o + Jie (21)

4.2. Gas phase

The mixture of air and water vapour is treated as a homogenous gas (i.e. the dry air and the vapour
occupy the same volume fraction n,, and are completely miscible). The mass averaged advective velocity of
air-vapour mixture with respect to the moving solids, v}, = 7, (vy — v), is due to both pressure and tem-
perature gradients, that is,

oo _kwon o,

gi - My ]
g Ox; ox;

(22a)

where ky; and p, are the components of the permeability tensor and the dynamic viscosity of air-vapour
mixture, respectively, and k,r;; are the components of the thermal coupling tensor for gas flux.
In Eq. (22a), the mass averaged velocity of the gas, vy;, is defined as,
1

Ugi = — (pdaudai + vaVi) (22b)
Pe

where vg,; is the absolute velocity of the dry air, v,; is the absolute velocity of the vapour, and
pg = Pda + Py (22C)

p is the density of the gas, pgy, is the density of the dry air, and p, is the density of the vapour. The
volumetric gas content, n,, is defined as,

ne="5—p—m=—P_[(1 = S)n—HnS] (23)

4 P1— Py
where H is the coefficient of solubility of gas in liquid defined by Henry’s law, S; is the degree of saturation
defined as the volume of water (i.e. volume of liquid plus condensed vapour) over the volume of voids (i.e.
Vo/V:), and n is the porosity V,/V = n, + nj.
The diffusive velocities of the dry air and the vapour with respect to the mass averaged velocity of gas are
defined as,
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~ 1

Udai = Udai — Ugi = — (Ufiai - v;z’) (248')
ng

~ 1, . .

Uvi = Oui = Vg = = (v — vy) (24b)

g
and they satisfy the constraint,

pda/l;d'di + pV/U\V,' =0 (24C)

In Eqgs. (24a)—(24c), v},, and o, are the relative dry air and vapour velocities with respect to the moving
solid.

To satisfy the conservation of mass for the gas phase, we first write the conservation of mass for the dry
air and vapour as,

Dry air

— o puas) = 2 ) (25)
Vapour

— o) = 5 (1) = pi (26)

The conservation equation of mass for the gas phase is simply obtained by summing the balance Egs. (25)
and (26), yielding,

0 0 )
*a*xi (Pg”gvgi) = A ("gpg) — Piig (27)
Now, following the same procedure as for the liquid phase, Eq. (27) can be expanded and re-arranged to,
o . dgp dyn, Qs
_pga_xl_(vgi):ngd—tg—’—pg dt +pg ga p]]lg (28)
The dry air—vapour mixture is considered as an ideal gas,
PgMg
Py = (29)
¢RI,
where M, is the molecular mass of air-vapour mixture, with p,/My = (o, /M) + (p,/M.), Py = pg + Pam 18
the absolute gas pressure. The derivative of p, with respect to the moving gas in Eq. (28) can be written as,
d.p dop, d, T,
TR T e (30)
in which ¢, = 1/P,, and c,r = 1/7,. Substituting Eqs. (22a) and (30) into Eq. (28) gives,
0 | kg 6p oT, 6p 147 oT, oT, . P .
Introducing the constitutive relationship (Khalili and Khabbaz, 1995),
d,7;
Vg = ag; + [, — o — (o4 — oty + g — my)cs]dspe

— el — ofc — (g — m)es]dspr — (g — ng)er ds Ty — Egr diT (32)
and assuming vy (0(+)/0x;) < 0(-)/0¢, Eq. (31) can be written as,
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0 ( kg Op o7, op , op
o ( jgj gj‘k kgTzi/a—xf> = [ngeg + ¢}y — ofc — (o — oy + ng — my)cy G—f — [chy — aie = (o0 — m)ey] o
0%u; o7, oT, Ope oT,
+ o ata T NgCeT —~ ot — NgCorVgi 7 ox,; =+ NgCglgi ~— o (otg — ”g)CTE
oT p
— — 33
Cigt ot pgﬁg (33)

5. Vapour transport

The vapour transport within the gas phase is described as the sum of two processes: (1) diffusion due to
vapour gradient, (2) advection due to the movement of the gas. Following the Fickian concept of mass
transport by molecular diffusion, the diffusive vapour mass flux, ¢¢, due to the vapour gradient is written
as,

- r r apv
44 = P = P = o) = —neDyy (34)
Xj

in which Dy;; is the molecular diffusivity of vapour in the pore gas. The advective vapour mass flux with
respect to the moving solid is,

qi,— = va;i (35)

Rewriting the conservation of vapour mass (26) in order to highlight the advective and diffusive transfer
terms, we obtain using Eq. (24b),

0 A 0 0 .
T (qSi + CIW-) T o (”ngUsi) = F (”gpv) — Plig (36)

Notice that the second term on the left-hand side of Eq. (36) describes the conservation of vapour mass with
respect to a fixed reference system rather than the moving solid. For the purpose of combining with the
constitutive equations, Eq. (36) is rearranged to,

o1 4 o dipy dsn, 6
pvaxi |:pv (QVi+qVi):| = Ny dr +pv ds

Approximating 0V, /0t =~ d,V,/dt, i.e. (1/V)0V,/0t ~ dsn,/dt + ng(Ovy/0x;), considering vapour as a perfect
gas p, = P,M,/RT,, and using Eqs. (32), (34) and (35), Eq. (37) can be further expanded in terms of the
primary variables,

) op ) oT, ) p
vai' - k i v Dw £ & £
Ox; <ngc ! ax,-) " Ox; {( ey el Ox ] Ta Ox; ( Mg @x/>

— P (37)

Opy op opi Qu
= ngcy at—&—[c;n—oclzc—(oq—ocg—&—ng n)cs]a—tg—[c;n—oclzc—(oq n)c. ]a + o g@t@x,
or o7, o, or, oT
- ngch atg nngTvvz ax + ngcvvw ai - (“g ng)CT ot 6lgT ot - ;ljlg (38)

in which P, = p, + pam is the absolute vapour pressure, ¢, = 1/P,, and ¢,r = ¢gr = 1/T,.
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6. Heat transport

Energy balance equations for small changes in temperature are given by Pecker and Deresiewicz (1973),
Bowen and Chen (1975), Bear and Corapcioglu (1981), McTigue (1986), Bear et al. (1991) and Gens et al.
(1998). Assuming the solid, liquid and gas phase temperatures are not in local thermal equilibrium, and
neglecting the increase in the internal energy due to shearing, the energy balance equation of the solid phase
1s written as,

0 o%\ _ 0T, 0T o
o (nsisi/a—xj> = nspscs< 5 T 6x,-> T.[(on — m)er — ngéier] ”
azui
at@xi

0
— T[(og — ng)er + mligr] 4 Ty + i (Ta — Ti) + Keg(Ti — Ty) (39)

ot
in which Ag; is thermal conductivity of solid phase, C; is the heat capacity of the solid, «y is the coefficient of
heat exchange between the solid and liquid phases, and «, is the coefficient of heat exchange between the
solid and gas phases. Terms considered in Eq. (39) are the flux of thermal energy due to conduction and
convection, the change in the energy due to a change in matric suction (i.e. heat of wetting plus the work of
pore air and pore water pressures on the two pore boundaries), change in the internal energy of the solid
phase due to volume change of solid skeleton, and the exchange of energy between the solid phase and the
liquid phase and between the solid phase and the gas phase. Notice that the terms on the right-hand side of
Eq. (39) are positive when they correspond to loss of energy for the solid phase.

The energy balance equation for the liquid phase is in turn written as,

0 \ 6T] 6n1p1T1 al)lii’l]plTi d181 Gpg 8p1 .
— (g ) = T — | — T =2 -2 ) 4L
o, (”‘”” ax,-) C( a e ) Tmibg a er\ 5 ~ 5 ) Tl
+ Kls(Ti - Ts) + Klg(ﬂ - Tg) (40)
with
dig Ldp| = dp
de |, pode |, T (41a)

in which /; and C; are the thermal conductivity and the heat capacity of the liquid phase, respectively.
Kis = Kg and ki, is the coefficient of heat exchange between the liquid phase and the gas phase, L is the latent
heat of vapourisation, and f, = dpi/0Ti|, = cir/c1. The third term on the right-hand side represents the
change in the internal energy due to change in the volume of liquid, the fourth term represents the change in
the energy due to a change in matric suction, and the fifth term represents the energy loss due to phase
change. Notice that this latter term will only be present during vapourisation, as indicated by the symbol
(-); namely (ji,) = jig if jip = 0 and (ji;) = 0 if ji; < 0.
Now, considering

omp Ty  Ovymp Ty Onmp,  Ouymp, o7, o7

=T R 41b

o T ox, "o oy i T (41b)
together with Eq. (41a), Eq. (40) can be written as,
0 . 0T oT; opi op . .
o (nlﬂlija—xj) = nlclpla — (e — &gr) Tia - nlélgTﬂa—f + Lo (jig) — CipyigTi + 11s(T — Ty)
0T
+ wig(Ti — Ty) + mCipyoy — (42)

Ox i
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Similarly, the energy balance equation for the gas phase can be written as,

0 oT, oT, 152 op . )
a_x,- (”g’lgiiﬁ) = ”gcgpga_tg + ngélgTTga — Ng (CgT + flgT) T, a_;g — Lpi(—jig) + CepifigTy

oT,
+Kgs(Ty — o) + k(Ty — Th) + ”gCgnggia_; (43)

in which Zg; and C, are the thermal conductivity and the heat capacity of the gas phase, respectively. Again
notice that in Eq. (42) energy generated due to phase exchange occurs only during condensation, and
Kes = Ksg» Kg = Kjo. Finally, we note that in Eqs. (42) and (43) the term C,T, could be replaced by the
enthalpy 4, of the phase o.

7. Summary of governing equations — elastic behaviour

In summary, the differential equations describing the coupled thermo-hydro-elastic process in unsatu-
rated media may be written as,
Deformation — balance of momentum of the mixture (N equations)

o |:Di/'kl % — (udpy + ogdpy + Vde)éi/:| +dF; =0 (44a)
ox; |77 ox

Liquid flow — balance of mass of fluid (one equation)

o hy [ o (. oF om  op, Ow O, O 0T,
I < o (ke ) = a2 — a2 oy — gy = — a2 — a4y, =2
o (ax,.” R el B T
oT; 3
— mervy a_x,l + nmcvy; a—f;l + jlg (44b)

Gas flow — balance of mass of gas phase (one equation)

i(kgij%> i ( TuaTg> .  op O o, on; o7,
gliy

ax \ g ox; ) oy, o) T Y e e e R
T, 0 ,
— NgCeTVyi 6_; + ngColyi % - %Jlg (44c)
1 1 g

Vapour transport — balance of mass of vapour (one equation)

9 o\ 0 o1 o (ky Op
— Dyjz— | + = i — ngevtDyj) == | +2— | =2 ==
x; (ngcv ! ax-) + ox; {(kgT] necrDu) 6xj] + ox; ( g 6xj>

o % fa P g, P P, o, o oT, or,

— — gyt — Ay, — Oy, =< — QvT, = — Qy1,Uyi
o Wor " Ttorox, har Miar T My TRV,

Fanoy e _ P (44d)
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Heat transport — balance of energy (three equations)

Solid phase
1 0 . OT, oT, o 0p, o%uy; Ksg oT,
= | Mshsija— | = = —ani A — - I,—T1 T — T, i m T
T, ox, (" i axj> TR TN T My T ( ) (5= T) +annvags
(44e)
Fluid phase
1 0 0T, oTh opy dp, Lp . Kis K
Tlax,-<"1 ‘1"f'ax_,-> :aﬂng—ama—ang*“r*l(ﬁg) C1P|J1g+7l(T1—Ts) g(T T,)
0T
+ angvy a_x,l (44f)
Gas phase
1 0 . 0T, oT, op op, Lpl ) ) Kos
T, o, <”gﬂgz‘j§f) = ar,r, a—tg T ar 5 T One atg T ——(—Jie) + Cepriig + ng (T, - T)
Kg| oT,
+ 7?; (T —T) + aTngUgia—j (44¢g)
subject to the constitutive equations,
daii 1
3 = ¢ dey —andp — 0y dpy — a7, AT (45a)
dml
) = oyde; + ay dpl — ayg dpg — a, a7, — ag dn — arr, dTg (45b)
lo
dm,
o ogde;; — agdpy + agy dp, — agr, AT, — agr; dTi — a7, AT, (45¢)
g0
dn, = ar.de; — arydp — aredp, + arr, AT, (45d)
dn = —andp — agedpy + ar; dT (45¢)
d?’]g = _aTgl dp| — argg dpg + aTng dTg (45f)
Jig = w(_psv _pv> (45g)

with
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Cm cS Cm
=———, 0g=1-——
c ¢ c

/ 2 / 2
ay =me + ¢, — ¢, Ay = NeCy + Cpy — 03¢ — (04 — 0y + N — M)Cs, Ay = NgCy

a o nspscs a o nlplcl o ngcgpg
Ty — ) nn — ’ ToTy —
/ 2 / 2
Qg = ag = ay = ¢, —ajc— (o —m)cs, ayg = C), —oyc — (04 — otg + 1y — 1y)cCs (46)

agr, = dare =7, i, =darl = (061 - nl)CT - "sflgT

ai, = ap = nl(ClT - flgT)7 air, = dr,l = —ngflgT

agr, = arg = ayr, = (g — Ng)er + n5Cigr,  Aer; = azg = ayr, = Mméjgr
agr, = ar,e = ng(cgr + Cigr)y  avr, = ng(eyr + Cigr)

in which m; and m, are the mass liquid and the mass gas contents per reference volume of the porous
medium, respectively. 1, n; and 7, are the entropies per unit volume of the solid, liquid and gas respectively.
P, and p,, are the densities of the liquid and gas at the reference configuration, respectively. The con-
stitutive equations in Egs. (45a)—(45g) enjoy the major symmetry due to the reversibility assumption of the
physical processes taken into account. This result can also be achieved, through thermo-dynamic argu-
ments, within the general framework of mixture theory (Loret and Khalili, 2000b).

Noting that in many practical problems the compressibility of solid grains, ¢, is negligible, then the
coefficients in Eq. (3) simplify to,

Cm

0= og=1—104 (47a)

and the constitutive coefficients describing the hydro-mechanical response reduce to,

ay = mey+ agl, Agg = NgCg + Ay

/ 2
Qg = dgl = Ay] = Ayg = C) — ¥ C

(47b)

The governing equations presented above are general in nature and embody most of the previously pre-
sented formulations in the field. For instance, when the heat of wetting, and heat due to phase compression
are neglected, and it is assumed that the vapour is at the saturated liquid pressure, with all the phases in
thermal equilibrium, and that the vapour transport is due to diffusion only, the theory of heat and mass
transfer presented by Thomas and his coworkers is obtained. Also when the pore air volume reduces to zero
(i.e. Sy =1, ¢ = ey = ¢, and {,r = 0) and the thermal equilibrium is assumed, the thermo-elastic model for
fluid saturated media presented by McTigue (1986) is recovered.

8. Parameter identification
The proposed model involves the following parameters:

(a) Djjs (unit: Pa) is the drained stiffness of the soil skeleton, with symmetries in the first two and the last
two indices. For an isotropic elastic material, D;;; is completely defined in terms of the drained modulus
of elasticity, E, and the drained Poisson’s ratio, v.

(b) oy and o, are the non-dimensional tangent effective stress parameters, relating pore liquid and pore
gas pressures to matrix deformation.

(¢) ay and a,, (unit: Pa~') are the apparent compressibilities of liquid and gas, respectively.

(d) aig = ag (unit: Pa™') is the coupling term relating the pore gas and pore liquid volumetric deforma-
tions due to a change in suction.
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(e) arr,, arr, and ag,z, (unit: Pa/K?) are the apparent heat capacities of the solid phase, the liquid phase
and the gas phase respectively.

(f) a.r, = ar,. (unit: Pa/K) is the thermal expansion coefficient providing coupling between the deforma-
tion and the heat transport models.

(&) air, = a1, ai; = ar, air, = ag, (unit: 1/K) provide coupling between the liquid flow model and the
energy balance equations of solid, liquid and gas, respectively, arising from the temperature dependency
of the liquid—gas interface and the heat of wetting.

(h) agr, = aryg, agr, = agg, agr, = ar,e (unit: 1/K) provide coupling between the gas flow and the energy
balance equations of solid, liquid and gas, respectively.

(i) @y and ay, (unit: Pa~") describe the change in the pore vapour volume due to a change in liquid and
gas pressures, respectively.

(i) ayy (unit: Pa=!) is the apparent compressibility of the vapour.

(k) ayz,, avg, ayg, (unit: 1/K) provide coupling between the vapour transport model and the energy bal-
ance equations.

(D) xq = Kis, Kig = Kg and kg = Ky, (unit: Pa/K/s) are the coefficients of heat exchange between solid—
liquid, liquid—gas, and gas—solid phases, respectively.

(m) o (unit: Pa~!/s) is a proportionality coefficient controlling the rate of water transfer from liquid to
vapour and vice versa.

(n) Dy;; (unit: m?/s) is the molecular diffusivity of vapour in the pore gas.

(0) Asij» Ay and Ay (unit: N/K/s) are the thermal conductivity of the solid, liquid and gas phases.

(p) ki; and ky; (unit: m?) are the unsaturated permeability tensors of the soil with respect to liquid and
gas, respectively.

(q) kry; and kg (unit: m*/K/s) are tensors of thermal coupling for liquid and gas flux, respectively.

(r) &g (unit: 1/K) denotes the change in the pore liquid space due to a change in the curvature of the
liquid—gas interface.

(8) i and p, (unit: Pas) are the dynamic viscosities of liquid and gas, respectively.

The coefficients oy, o, an, ag, @z = ag, arr, agng, anr, G, = Are, A, = arl, dif = dgl, di, = dg,,
Agr, = g, Agry, = Arig, Agr, = A7,g, Grls Qygs Ay, Ay, Gyy; and ayg, are all related to the basic measurable pa-
rameters 7, S, ¢, ¢, €1, Cm, ¢y Cs, G, Cy, €1, CIT, CoT = Oy, P55 P15 P @a0d &y through relations given in Eq.
(46). n and S, can be measured using a number of direct and indirect methods available in the literature, e.g.
Bear (1972), with S; also being linked to matric suction through several relationships based on the soil water
characteristic curve (see e.g. van Genuchten, 1980). The compressibility coefficients of water and solid, ¢
and c, as well as the densities of solid, p;, liquid p;, and gas, p,, are readily available from the literature,
with ¢, often assumed to be zero. Similarly, the thermal conductivity coefficients Ag;, 4i; and Z,;, the heat
capacity coefficients Cs, Ci, C, and the thermal expansion coefficients cr, c¢ir, cgr, ¢y1, can be obtained from
the literature, see e.g. de Vries (1963) and Bear (1972). ¢ and ¢,, are the compressibility coefficients of the
soil structure with respect to total stress and matric suction, respectively. Depending on strain conditions,
the compressibility coefficient, ¢, for an isotropic elastic medium, is related to E and v, according to the
following relationships,

for one-dimensional strain condition, &; = coyy,
1 —2v)(1
e =2+ (48a)
(1=-vE

for two-dimensional strain condition, &;; + &» = ¢(o11 + 022)/2,

o= +y) (48b)
E
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for three-dimensional strain condition, & + &y + ¢33 = ¢(a1] + 62 + 033)/3,

. aa - 2v) (48¢)

Alternatively, the compressibility coefficients, ¢ and ¢, can be determined directly by subjecting a repre-
sentative elementary volume of the soil to an isothermal change in total stress or matric suction and
monitoring the volumetric change. In this case ¢ and ¢, are defined as (Egs. (45a) and (46)),

av/v
c=—"1"  fords=0, dp =0 49
d(()'i,'/3+pg) A ( )
dV/V Oji - -
en=-10 ford<?+pg)—0, dp =0 (50)

The effective stress parameters o; and o, and therefore the compressibility coefficient ¢, can also be de-
termined conveniently from the “total” effective stress parameter, y, proposed by Khalili and Khabbaz
(1998), and the effective stress equation (Bishop, 1959),

J:‘j =0+ (lel + Xgpg)élj
. (51)
n=ux« and ngl_x_?

with

se(T)/s]? for s > s.(T
(= (s frez 2

in which s.(7) is the bubbling pressure or the air entry value at the temperature, 7, and Q = 0.55. The air
entry value at temperature 7 can be expressed in terms of the air entry value at the reference temperature 7,
as,

Se(T) = _Se(To) (52b)

where a7 is the surface tension energy at temperature 7 which is approximated as (Edlefsen and Anderson,
1943),
¢ =0.1171 — 0.00015167 (unit Jm™2) (52¢)

Writing the incremental form of Eq. (51) and comparing to Eq. (2), we have,

0xs) _ [U(L =)z fors>se(T)
zas:{l V/ f8£s<se(T) (53a)
agzlfoclf% (53b)

The compressibility coefficient of the liquid phase with respect to an isothermal change in matric suction,
¢/, can in turn be determined as (Eq. (19)),
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;o dV]/V 0ji - -
m =~ g for d(?-i-pg) =0, dp, =0 (54)

¢/, can also be determined from the soil water characteristic curve using (Loret and Khalili, 2000a),

2
, dw n

Ch = —Gs(l — I’Z)a—‘rmcs

(55)
in which Gj is the specific gravity, w is the conventional water content defined as the mass of water over the
mass of solid.

The coefficients of heat exchange, g = ki, Ki; = kg and Ky = K, can be determined experimentally by
systematically subjecting each of the phases (solid, gas, liquid) to a change in the temperature and moni-
toring the response of the other phases within the system with time, much in line with the experimental
analysis of Pecker and Deresiewicz (1973) for fluid saturated porous media. By conducting the tests at
various degrees of saturation a relationship can be established between the heat exchange coefficients and
the saturation state of the system. For each degree of saturation, three independent tests will be required to
characterise each of the coefficients.

ky; and ky; can be determined directly in the laboratory or indirectly by the methods mentioned in
the literature, such as Yoshimi and Osterberg (1963), Brooks and Corey (1966) and Bear (1972). In ad-
dition, the non-linear behaviour of permeability with void ratio can be taken into account, if required.
Using the concept of the relative permeabilities of soil to flow of water and air, k;; and k; are often written
as,

kiij = kij X ky (56)
kgij == k,j X krg (57)

where k;; is the intrinsic permeability tensor of soil and, ky and k,, are the relative permeabilities of water
and air respectively. The following semi-empirical relationships between k; and &, and water saturation are
proposed by Brooks and Corey (1966),

kg = Se(2+32p)/),p (58)
ke = (1= Se)*(1 = SE+)l) (59)
where S, is the effective degree of saturation, defined as,
Sr — Sru Se p
= = (= 60
=750 o 5= (3) (60)

in which S, is the residual degree of saturation and /, is the pore size distribution index. Both of these
parameters are identified from the soil-water characteristic curve presented in terms of S..

The thermal coupling coefficients kir;;, kgrij, kri; and kg,;; can also be determined in the laboratory.
Typical values may be found in Mitchell (1993).

The coefficient {,r can be obtained by conducting a series of suction-controlled and stress-controlled
heating/cooling tests on a representative sample of the soil — using a modified pressure plate equipment —
and monitoring the mass liquid content of the soil. For a given temperature, {,r can then be calculated
using the constitutive relations (45a) and (45b) as,

dm

et :p—le_nl(cT —ar) (61)
lo
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9. Elastic—plastic constitutive equations
9.1. Basic assumptions

To describe the plastic properties of the system, we adopt the assumption that the yield function is
defined in the effective stress space, but its size, which in the Cam-Clay framework is measured by the pre-
consolidation stress, is affected by suction as observed in the experiments by Alonso et al. (1990) and by
temperature as in Hueckel and Baldi (1990) and Sultan (1997), among others. More specifically, the yield
function is defined as,

f.:f(o-;/asaTsaX) (62)

in which X is a set of hardening parameters. The yield function fis assumed to be smooth at the point of
interest. The plastic behaviour emanates from the solid skeleton. However, all three phases (solid, liquid,
and gas) will develop irreversible strains as in the case of saturated poro-plastic media (Rice, 1975). The

plastic flow is defined through a generalised normality rule and the existence of a plastic potential such that

g - g(aijaplapg; TS) = g(a,‘jvsa T%)a and

p!

dsg?sza—g, ap —da 8 A g0, (63)
' 003 : 0T Pro Ops

dA = 0 is the plastic multiplier and the superscript pl denotes the plastic response. The behaviour is called
associative, and the thermo-elastic—plastic stiffness of the underlying drained solid will display the major
symmetry property when the directions of the normals to the yield surface and the plastic potential in the
space (o, o1, Pe, I5) are identical.

Using the definition of the effective stress, the following straightforward connections are established:

% %  %g_ 02 % 0 _ 0 Q¢ (64)
aa,-j ~ ddl;’ apl a laagi 0s’ apg a gao—;i Os

ij

Similar connections hold for the yield function f. Thus,
pl

dm 0 dm 0
™o ol — a1, £ — el + s (65)
Pio aS pgo aS

Further simplifying assumptions can be made by imposing the restriction that the underlying behaviour
of the solid skeleton follows the lines of the critical state theory, Schofield and Wroth (1968). Then, the
volumetric plastic strains vanish at critical state. However, the fluid mass content will continue to vary if
0g/0s is different from zero, which is physically inadmissible as the fluid volume content must follow the
same trend. Therefore, in the absence of the experimental evidence to the contrary, we assume,

0g
20 66
% (66)
or
pl dm?
e R R S (67)
Plo pgo

A direct consequence of Eq. (66) is that the behaviour is non-associative, and that the elastic—plastic
constitutive equations will not be symmetric.

Finally, we assume that the increments of strain, fluid mass contents and entropy of solid are additively
decomposed into elastic and a plastic part,
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d.g,, =dgl+ defl,  dmy=dm$ +dm} J=lg

1, = dn + dn?!

9.2. Incremental elastic—plastic constitutive equations

Now, to obtain the incremental elastic—plastic constitutive equations of the system, the consistency
equation is first written in the usual way,

L gy Y ges L

o0, 4% T o S T ap I tax X =0 (69)

df =

Substituting Egs. (4), (63) and the first term of Eq. (64) into Eq. (69) yields the plastic multiplier d4,

L of of of o,
dA:E @Dijk/dskl—'— a d + <6T a - ,jkk/ dT (70)

in which the modulus H = H (s, T, X), which depends a priori on suction and the solid temperature, is
defined as,

afD Og

H_h+a/ ’J"la/

>0 (71)

It is noted that H is formally identical to its isothermal counterpart in the underlying drained solid
H = H|_, . The hardening modulus & = h(s, T, X) is defined as,

= - — (72)
which describes the evolution of the size of the yield surface and is a priori a function of suction and solid

temperature. Substituting the plastic multiplier d4, Eq. (70), into the elastic equations in Egs. (45a)—(45g)
and making use of the relations (65) and (68), we obtain the incremental elastic—plastic equations,

do; = Dy, den — (o0);] dpn — (o);7 dpe — (or,);7 dTe (73a)
dm, d P dp — aPdp, — a dT dr; dr, 73b
o = (@) dew + af dpy — agy Apy — ayg dfs — ay A1y — ayr, A1y (73b)
dm, = \ep P

; = (&)} dew — a dpy + ag dp, — agy AT, — agr dTi — agr, dT, (73c¢)

)

dng = () dew — adp — afydp, + agty, dT; (73d)
dn = —ardp — agdp, + agd7; (73e)
d?’]‘g = _aTgl dpl — ang dpg =+ aTng dTg (73f)

with
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1 dg of

— Dy =2
jjmn pakl
H 00, 00,

€ 1 af — \ep 1 af
(Ofl)zyP = 9‘1511/ - E (Dijmn aﬂmn> ds (OCI)H = oyl — ]7 (Dklmn 3o, ) s

. 1 af _ 1 af
(Otg);) = O(gé,‘j + E (Dijmn a ) Os (OC )kl - ngékl T H (Dklmn 0 mn) Os

P
Dijkl - Dijkl -

L og of . 1 of og
(aéTs)zp - Dljkk +HDl/m"a aT (aTs ) 1= Dkluv +HDk/mna 6T
c 1 of og c 1 of og
ar = a 1+Ea_a Ao = e+ 37 50 50 (74)
¢ 0g of of
ary, = ang, T (@Diﬂd{y o ) (6 _JDljkk/ T
1 6f 6g
alg B agl = e H s Os

e of of e 0g 9g\ of
al?’ i = H<60- Dijuy = 63)63 an’,—am ﬁ(%aﬂw s ) ds

i i

af af e 1 g og af
agl;s =dgr, + 4 I77 (661_, Dijy — os ) s ang =ar, + I (agUDijkky % ) 3

Imposing the restriction 0g/ds = 0 in Eq. (66), we have,

Z\eP _ = \ep
(0);; = oudy, (%y);; = g0y
1 Og of 1 Og of
ahy = a, — - =Dy =, gy = arg + 7 2 D) A~ (75)
s H aO_,‘/‘ 6 H a l/ 6S
ep _ ep _ ep _ ep _ ep _ _
ay = an, Ago = Qgg, g = dg 1 = ig = dyl, i, = ar, Aoy, = A1y = Arg

In all cases, note that the evolution of the entropies in the fluid phases (73e), (73f) are unaffected by
plasticity. With the assumption (67), the constitutive equations for the fluid mass contents retain their form
for the elastic behaviour, although plasticity enters through the presence of the strain &gy. The only co-
efficients modified by plasticity are those describing the evolution of total stress (73a) and entropy of solid
(73d) through Df,, ()7, (%)57 » (aérs)f]p, (are)q» az)s aTg, and a7’

Now, substituting the elastic constitutive coefficients in Eqgs. (44a)—(44g) by their counterparts in Egs.
(73a)—(75) yields the differential equations governing the elasto-plastic thermo-hydro-mechanical response
in unsaturated porous media.

9.3. Modified Cam-Clay as a plastic driver

To further define the basic features of the present plasticity model, the modified Cam-Clay with isotropic
hardening is invoked as a plasticity driver. Matric suction, s, solid temperature, T;, and plastic volumetric

strain, ¢, are introduced as hardening variables. The yield surface is defined as,
1o R) = g+~ R =0 (76)
in which p’ = —a/,/3 is the mean effective stress, ¢ is the second invariant of stress deviator, and M is the

slope of the critical state line, which is related to the internal friction angle ¢'; M is assumed to be inde-
pendent of temperature and suction. P, is the isotropic yield stress or the pre-consolidation pressure, fixing
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q ,
q=Mp

P,/2 P,(0T,) P.(sT,) P’

co s0

Fig. 2. Plasticity model.

the size of the yield surface (Fig. 2). It incorporates the effect of strain hardening and strain softening due to
plastic volume change through the hardening parameter X = —sgl. Hardening occurs due to plastic con-
tractancy dX > 0, and softening occurs due to plastic dilatancy dX < 0. P, also incorporates the effect of the
stiffening and softening of the solid matrix with suction and temperature. Much work has been conducted
on the stiffening effect of suction on the soil matrix; however, the work on the effect of temperature on the
soil matrix has been relatively limited. This is particularly the case on the combined effect of suction and
temperature on the pre-consolidation stress P.. There is currently no experimental evidence as to the
coupled effect of suction and temperature on the soil response. The hydro-thermo-mechanical hardening
law for unsaturated soils may be defined as,

P(s.T) = oG T exp 55 )

in which v, = 1 + e, is the initial specific volume, A(s, 7;) is the current slope of v ~ Inp’ curve at loading,
and « is the current slope of v ~ Inp’ curve at unloading, assumed to be independent of temperature and
suction. P, is the saturated isotropic yield stress at the reference solid temperature Ty,, and ¥(s, T;) is the
hydro-thermal hardening multiplier, describing the evolution of yield surface with suction and solid tem-
perature (Appendix A),

N(S7 715) 7N(Oa TSO) ;“(S7E) 7/1(07 ]-;O) 1 + €

Vs, Ty) = — InPy——————
(s, 7y) = exp s, Ty) — i As, Ty) — K e s, Ty) — K

crAT, (78)

where A(0,T,,) is the slope of v ~ Inp’ curve at saturation, and N is the specific volume at p/ = 1 unit.
According to Eq. (78), suction and temperature may affect the size of the yield surface through both the
temperature and suction dependency of 12 and N, as well as the thermal expansion coefficient of the solid
skeleton. The change in the size of the yield surface due to thermal dependency of A is often referred to as
thermal ductilisation/softening (Hueckel et al., 1998). For A(s, Ty) = 4(0, T3, ), there will be no thermal
ductilisation, and the change in the yield stress will result in parallel consolidation lines in a logarithmic
scale (Fig. 3). For A(s, T;) > A(0, Ty,) the consolidation lines will be convergent. The isothermal, suction-
controlled, experimental results of Cui and Delage (1996) correspond to the former response while those of
Wheeler and Sivakumar (1995) correspond to the latter condition. The functions N(s, T;) and A(s, Ty),
controlling the evolution of the yield surface with temperature and suction, are determined experimentally.
To account for the isothermal elastic response of the soil skeleton that occurs with increasing suction after
the air entry value (Fleureau et al., 1993), as well as the collapse phenomenon upon wetting (Matyas and
Radhakrishna, 1968), the slope of the mean effective stress 0p’/0s must be smaller than the slope of the pre-
consolidation stress 0P, /0s (Loret and Khalili, 2000a),
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A0.T, )

As.T,)> A0,T,,)

’

p

Fig. 3. Isothermal constant-suction consolidation lines for unsaturated porous media.

op' OP,
P e (79)
Os |, Os |,
Now using Eq. (77), the hardening modulus, /4, in Eq. (72) becomes,
Uo VX og
=—P,Y(s, T — | =
= e nee () o (80)

As discussed in Section 9.1, the flow rule is non-associative with respect to suction. Assuming associativity
in the effective stress space, the plastic potential is defined as,

2
/ _ q /_ —

in which ¥ is a function of solid temperature, to be determined experimentally. For the particular case of
associativity with respect to the solid temperature, ¥ may be determined using the constraints,
0U(Z;) _ OF(s, Ty) 0 (75)

o, o, and 5 =0 (82)

Acknowledgements

This work was completed during a stay of the first author at Laboratoire Sols, Solides, Structures,
Institut de Mécanique de Grenoble, France. The financial support in the form of a senior fellowship from
the French Ministry of Research (Bourse de Haut Niveau MESR) is gratefully acknowledged.

Appendix A. Hydro-thermal hardening function

To derive the hydro-thermal hardening function, consider consolidation responses at constant suction
and constant solid temperature of two identical soil samples, and the stress path 1-2-3, as shown on Fig. 4.
Sample A is consolidated in a saturated state and at the reference solid temperature T,, whereas Sample B
is consolidated at the solid temperature 7, suction s and the average liquid—gas interface temperature, 7,
with s > 5.(T). Consider the stress path 1-2-3-4-5-6. The stress at Point 1 is P, and at Point 6 it is
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Fig. 4. Hydro-thermal hardening in unsaturated media.

P.(s, Ty). At Point 1, the sample is isothermally unloaded to Point 2, and then loaded thermally (i.e. at
constant effective stress) to solid temperature 7; at Point 3. Along the stress path 3—4 the suction within the
sample is increased to s. From 4 to 6 the sample is loaded mechanically to effective stresses p; and P(s, T),
at Points 5 and 6, respectively.

The plastic volumetric change from 5 to 6 can be written as:

1 Pe(s, T
& =gy — & = [fe [A(s, T5) — k] In (;,5 ) (A.1)
The void ratio, es, at Point 5 is expressed as,
es = N(s,Ty) — A(s, Ty) In ps = N(0, Ty,) — A(0, Tyo) In Py — ;clnll_j—5 + o1 AT, (A.2)
in which,
AT, =T, - T, (A.3)
Substituting for pi in Eq. (A.1) from Eq. (A.2) and rearranging give,
[N(s,T.) = N(0,T,) (0, Ti) — 1 P erAT,
PC(S, TS):eXp N(S’ 5) ( ) 50) /LA( ) 50) KlnPCO—( +eo)(8n +CT 5) (A4)
Ms, Ty) — K As, Ty) — Kk Ms, Ty) — i
Eq. (A.4) can be further expressed as,
[N(s,T,) = N(0,To) (s, T.) — 4(0, Tyo) (14 eo) (e + crATy)
FPo(s, T5) = - P In P In Py, — 5
(s, i) = exp AMs, Ty) — s, Ty) — K Moo 0 Feo As, T) —
(A.S)

or
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_ (1+ eo)e
PC(S7T'S) _PCO exp )L(S7 Tws) — K X lII(S7T'S) (A6)
in which
N(s,Ty) = N(0,Ty,) (s, Ty) — (0, Ty,) (1 + e,)cTAT;
Vs, T.) = — InP, ———T"F—— A.
(s, Ts) = exp As, T,) — K AMs, Ty) — K e AMs, Ty) — K (A7)
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